220 research outputs found

    The Atacama Cosmology Telescope: Dynamical Masses and Scaling Relations for a Sample of Massive Sunyaev-Zel'dovich Effect Selected Galaxy Clusters

    Get PDF
    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 sq. deg. area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R~700-800) spectra and redshifts for ~60 member galaxies on average per cluster. The dynamical masses M_200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z=0.50 and a median mass M_200c~12e14 Msun/h70 with a lower limit M_200c~6e14 Msun/h70, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y, the central Compton parameter y0, and the integrated Compton signal Y_200c, which we use to derive SZE-Mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (<~20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the 3-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ~50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations but given the current sample sizes these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.Comment: 15 pages, 4 figures. Accepted for publication in The Astrophysical Journal; matches published version. Full Table 8 with complete spectroscopic member sample available in machine-readable form in the journal site and upon request to C. Sif\'o

    The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey

    Full text link
    We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap

    Gene prediction in metagenomic fragments: A large scale machine learning approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in their infancy. In contrast to genomic sequences of single species, which can usually be assembled and analyzed by many available methods, a large proportion of metagenome data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic sequencing projects is the identification of novel genes. Short length, for example, Sanger sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments require approaches to gene prediction that are different from the currently available methods for genomes of single species. In particular, the large size of metagenomic samples requires fast and accurate methods with small numbers of false positive predictions.</p> <p>Results</p> <p>We introduce a novel gene prediction algorithm for metagenomic fragments based on a two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In the second stage, an artificial neural network combines these features with open reading frame length and fragment GC-content to compute the probability that this open reading frame encodes a protein. This probability is used for the classification and scoring of gene candidates. With large scale training, our method provides fast single fragment predictions with good sensitivity and specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict translation initiation sites accurately and distinguishes complete from incomplete genes with high reliability.</p> <p>Conclusion</p> <p>Large scale machine learning methods are well-suited for gene prediction in metagenomic DNA fragments. In particular, the combination of linear discriminants and neural networks is promising and should be considered for integration into metagenomic analysis pipelines. The data sets can be downloaded from the URL provided (see Availability and requirements section).</p

    Pudendal nerve decompression in perineology : a case series

    Get PDF
    BACKGROUND: Perineodynia (vulvodynia, perineal pain, proctalgia), anal and urinary incontinence are the main symptoms of the pudendal canal syndrome (PCS) or entrapment of the pudendal nerve. The first aim of this study was to evaluate the effect of bilateral pudendal nerve decompression (PND) on the symptoms of the PCS, on three clinical signs (abnormal sensibility, painful Alcock's canal, painful "skin rolling test") and on two neurophysiological tests: electromyography (EMG) and pudendal nerve terminal motor latencies (PNTML). The second aim was to study the clinical value of the aforementioned clinical signs in the diagnosis of PCS. METHODS: In this retrospective analysis, the studied sample comprised 74 female patients who underwent a bilateral PND between 1995 and 2002. To accomplish the first aim, the patients sample was compared before and at least one year after surgery by means of descriptive statistics and hypothesis testing. The second aim was achieved by means of a statistical comparison between the patient's group before the operation and a control group of 82 women without any of the following signs: prolapse, anal incontinence, perineodynia, dyschesia and history of pelvi-perineal surgery. RESULTS: When bilateral PND was the only procedure done to treat the symptoms, the cure rates of perineodynia, anal incontinence and urinary incontinence were 8/14, 4/5 and 3/5, respectively. The frequency of the three clinical signs was significantly reduced. There was a significant reduction of anal and perineal PNTML and a significant increase of anal richness on EMG. The Odd Ratio of the three clinical signs in the diagnosis of PCS was 16,97 (95% CI = 4,68 – 61,51). CONCLUSION: This study suggests that bilateral PND can treat perineodynia, anal and urinary incontinence. The three clinical signs of PCS seem to be efficient to suspect this diagnosis. There is a need for further studies to confirm these preliminary results

    GABA Expression and Regulation by Sensory Experience in the Developing Visual System

    Get PDF
    The developing retinotectal system of the Xenopus laevis tadpole is a model of choice for studying visual experience-dependent circuit maturation in the intact animal. The neurotransmitter gamma-aminobutyric acid (GABA) has been shown to play a critical role in the formation of sensory circuits in this preparation, however a comprehensive neuroanatomical study of GABAergic cell distribution in the developing tadpole has not been conducted. We report a detailed description of the spatial expression of GABA immunoreactivity in the Xenopus laevis tadpole brain at two key developmental stages: stage 40/42 around the onset of retinotectal innervation and stage 47 when the retinotectal circuit supports visually-guided behavior. During this period, GABAergic neurons within specific brain structures appeared to redistribute from clusters of neuronal somata to a sparser, more uniform distribution. Furthermore, we found that GABA levels were regulated by recent sensory experience. Both ELISA measurements of GABA concentration and quantitative analysis of GABA immunoreactivity in tissue sections from the optic tectum show that GABA increased in response to a 4 hr period of enhanced visual stimulation in stage 47 tadpoles. These observations reveal a remarkable degree of adaptability of GABAergic neurons in the developing brain, consistent with their key contributions to circuit development and function

    Serum proteome analysis for profiling protein markers associated with carcinogenesis and lymph node metastasis in nasopharyngeal carcinoma

    Get PDF
    Nasopharyngeal carcinoma (NPC), one of the most common cancers in population with Chinese or Asian progeny, poses a serious health problem for southern China. It is unfortunate that most NPC victims have had lymph node metastasis (LNM) when first diagnosed. We believe that the 2D based serum proteome analysis can be useful in discovering new biomarkers that may aid in the diagnosis and therapy of NPC patients. To filter the tumor specific antigen markers of NPC, sera from 42 healthy volunteers, 27 non-LNM NPC patients and 37 LNM NPC patients were selected for screening study using 2D combined with MS. Pretreatment strategy, including sonication, albumin and immunoglobulin G (IgG) depletion, was adopted for screening differentially expressed proteins of low abundance in serum. By 2D image analysis and MALDI-TOF-MS identification, twenty-three protein spots were differentially expressed. Three of them were further validated in the sera using enzyme-linked immunosorbent assay (ELISA). Our research demonstrates that HSP70, sICAM-1 and SAA, confirmed with ELISA at sera and immunohistochemistry, are potential NPC metastasis-specific serum biomarkers which may be of great underlying significance in clinical detection and management of NPC

    Science from an Ultra-Deep, High-Resolution Millimeter-Wave Survey

    Full text link
    Opening up a new window of millimeter-wave observations that span frequency bands in the range of 30 to 500 GHz, survey half the sky, and are both an order of magnitude deeper (about 0.5 uK-arcmin) and of higher-resolution (about 10 arcseconds) than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. In particular, such a survey would allow for major advances in measuring the distribution of dark matter and gas on small-scales, and yield needed insight on 1.) dark matter particle properties, 2.) the evolution of gas and galaxies, 3.) new light particle species, 4.) the epoch of inflation, and 5.) the census of bodies orbiting in the outer Solar System.Comment: 5 pages + references; Submitted to the Astro2020 call for science white paper

    The Atacama Cosmology Telescope: Detection of Sunyaev-Zel'dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    Full text link
    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y200 and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 1e14 M_sun.Comment: Accepted in ApJ. 14 pages, 6 figure
    corecore